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This paper examines the statistical behaviors of variables in the simulated anri8&jrajgorithm when it
is used to solve the x-ray phase problem. The results found help remove ambiguities of its application, and
clarify its analogy to statistical mechanics. The x-ray phase problem consists in discovering unknown atomic
positions of a crystal, given its x-ray diffraction data. SA solves this problem by selectively accepting random
trial atomic positions; a cost function is used to measure the nearness of the experimental structure factor to
that from a trial solution. The algorithm treats a cost function agaatificial) energy, a control parameter as
a (artificial) temperature, and recovers an optimal solution by lowering the temperature through a cooling
schedule. In this paper the probability distribution of the energy is numerically calculated, and provides the first
two moments of the energy versus temperature; an approximate solution is also provided. This result shows
that the sudden drop in energy often seen in SA runs is actually a transition to a nonequilibrium state. The
average configuration error for a given energy is determined, and provides a measure of the quality of a
solution. Analytic estimates are made of the high-temperature behavior, which are of use in determining the
cooling schedule. Finally, the dependence of the normalization factor for the data is calculated and shown to
mirror the solution quality. These results are applied to an ideal crystal with orthorhombic symmetry, and also
to real data on the gH,,0, molecule(with P2, /c symmetry. [S1063-651X98)14210-1

PACS numbegps): 02.70.Lq, 61.43.Bn, 42.30.Rx, 64.9(h

[. INTRODUCTION configuration, or where traditional methods fail, perhaps be-
cause of a large number of local minima in the cost function.
The x-ray phase problem consists in determining thdt should be pointed out that beyond the original formulation
atomic positions of an unknown crystal, given its x-ray dif- [2], works of a theoretical nature are few and scattered. For
fraction data and perhaps other information on the crystaéxample, work on cooling schedules has produced a proof
structure. The ability to solve for unknown structures is ofthat at sufficiently slow cooling, the exact solution will be
great practical importance. For example, the discovery ofound with probability ong8,14]. Heuristical cooling sched-
new proteins could help significantly in the design of newules offer improvements when resources are limited, but no
drugs, perhaps for fighting cancer. It has been demonstrategkeneral picture has been painted to say which is best. There
[1] that this problem is amenable to the simulated annealinpave also been configuration space analyses that found evi-
(SA) algorithm developed by Kirkpatriclet al. [2]. The dence for hierarchical statisti¢45]. Also, the phase transi-
method centers around a suitably defined cost fundtisn tion behavior of certain models has been studied with the
energy that defines the nearness to a target solution. In thispplication of the so-called replica tridi6]. While these
case, the energy essentially measures the difference betwemsults are important in their own right, they do not directly
the experimentally determined structure factor and that debear on clarifying matters in the application of SA to the
rived from a trial configuration of the atoms. A Monte Carlo phase problem. For example, one would like to know what is
algorithm [3] is used to search these trial configurations,going on when the energy drops suddenly, in a manner remi-
where the role of the temperature is taken over by a contrahiscent of a phase transition. It is not known: if this is an
parameter. The temperature is lowered according to a cooknalog of a phase transition; if it is a nonequilibrium effect;
ing schedule, forcing the system to explore lower-energyf it strongly affects the quality of the final solution; if it
configurations; in this way an optimal solution is found. An- would be better to try to avoid it, or even if it is avoidable. In
other technique that has been successful on the phase pratihort,any informationthat can be used to help understand or
lem is the direct method,; this approach is reviewed by Woolpredict the SA algorithm is of practical use and should be
fson[4]. pursued, especially when one considers how wide-ranging
The purpose of this paper is to discover how the simulatedhe applications are.
annealing algorithm works in this application, so that it may A number of results are presented here, most important of
be better applied to the x-ray phase problem. One wouldvhich is the determination of the probability distribution of
expect that results found here would carry over to some of ittshe energy. This allows the average energy and its variance
myriad applications; examples include very large scale inteto be determined as a function of temperature. To the au-
grated(VLSI) chip desigri2,5], the traveling-salesman prob- thors’ knowledge, this has not been done on any problem
lem [2,6], spin-glass ground stat¢g], image analysi$8,9]  studied with SA. In this case, it allows us to show that the
and pattern recognitiofl0], graph partitioning[11], code apparent phase transition is a nonequilibrium effect, due to
generatior12], least-squares fitting of many unknowids],  the system getting stuck in a low-energy configuration. This
etc. In general, such a stochastic approach is efficient in sitthappens at the same point as the vanishing of the acceptance
ations where it is(practically impossible to search every ratio. In addition to determining the energy distribution by
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convolution, a quick prescription is also given for its ap-
proximation. In the limit of high-temperature sampling, ac-
curate estimates are made of the energy and its variance. ®
addition to giving information for the initial temperature,

they also provide a means for quickly estimating the normal-
ization factor between the structure factor from experiment
and theory. The temperature dependence of this normalize
tion is found to mirror the accuracy of the solution. Finally,

it is demonstrated how this accuracy can be computed as
function of energy. The above techniques are introduced an
tested on an ideal crystal with orthorhombic symmetry in
Sec. lll. Many of them are reapplied in Sec. IV, for a real P P
crystal withP2,/c symmetry.

II. THE X-RAY PHASE PROBLEM AND SIMULATED
ANNEALING

The phase problem consists in determining the atomic po 4 - v g - y - - - -
sitions of an unknown crystal given its structure factor data.
Other information such as the number and types of the con 12
stituent atoms may or may not be available. The structure
factor F, which is the Fourier transform of the electron den- 1
sity (p),

08+

F(k)= f o3 p(r)elT, L £

is measured at a numbst of reflections(or k points, where o
k is a reciprocal lattice vector for the given crystal group; the
position vectorr is integrated over the unit cell. However,
because the intensity|F|? does not contain phase informa-
tion and becaus® is always finite, it is not possible to

1 i L ! It { 1 1

exactly invert the transform and determine the unkngwn %o o1 oz 03 04 05 o8 07 o8 o9 1
As mentioned in the Introduction, there are a number of ® r
approaches that have been taken to overcome this lack of

information. The one studied here is the SA algorithm, which  F!G: 1. The positions of the data atoms are indicated by the
8fght circles. Seven of the trial atoms are fixed in the correct posi-

seeks the solution by stochastically searching the space g : : i ) . ) .
available configurations. At the heart of the algorithm is thet'oc:‘:e(;”:sg Ct';‘:%zsﬂq: delilr?g];hTi?anrﬁIIe;iscelr?lﬁclﬁoilIg:ve:sitt(i)on
cost function, or energy, which measures the goodness of i 9 energy P
. : - . as the free atom moves along this line.
(or quality of the solution For this problem it may be de-

fined as lowest point corresponding to the correct position of the free

1 ) ) atom (as it should, the most notable feature is the presence
E=D, E,= ME {IF4(k)| = N|F(k)|}? (20 of mult|ple minima. The smallest _scalg in this graph should
{k} 1k} scale with the inverse of the maximulik| in the data set.
. The SA algorithm was designed to avoid these metastable
SO t,hatho corresponds to th? exact splqho)q © a nor- minima by occasionally allowing the search to move uphill
malization parametgrother qualitatively similar forms fog ~ ; energy. The algorithm is based on an analogy to statistical
will be considered in a later section. Heté,d| is the mag- mechanics, in which each Configuration of the SyS(ﬂ-!m,
nitude of the structure factor as measured in experiment, a”&\'rangement of the atomis assigned a Boltzmann probabil-
|F,| is the computed version, based on a trial configuration. 'Yty exf —E({F)/T], whereT is normally the temperature, but
may appear that this could be straightforwardly solved byg here just a control parametéthe Boltzmann constant is
steepest descent or a related technique, but there is a seriays o one throughout this papeThis distribution is recov-
difficulty in that there are multiple minima in the function g.eq by Monte Carlo sampling. For example, using the Me-
E({r}) (where{r} is the set of positions of the atomdhese tropolis scheme, an update from an enekyyo E+AE is
minima can be shown using &y(k) (with M =126) calcu- accepted if
lated from an artificial two-dimensional circular molecule
comprised of eight atoms. For example, in Figp)is shown p<min[1,exgd —AE/T)], 3)
a trial configuration for this molecule, in which all the atoms
are in the correct position, except for the one that is allowedvhere w is a random number on the unit interval. If the
to move along a line. The energy for the system as a functiosampling is ergodic, the updating will sample configurations
of this movable atom is given in Fig.(d). Aside from the with a Boltzmann weight. Upon lowerind (according to
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some cooling schedulethe Boltzmann weighe &7 favors 08
lower-energy configurations, and thus improves the quality

of the solution. An obvious advantage this technique has s}
over steepest descent, for example, is that higher energic
may be explored, and thus becoming trapped in a local mini
mum is less serious of a danger. In addition, the parameter

will be perturbedas the energy wasand new values will be ’:i
accepted according to the same Metropolis criterion. = o3}
[
Il. IDEAL CRYSTAL 02 |-

In this section the relatively simple case of a crystal with
orthorhombic symmetry, no internal symmetry, and pointlike o1}
atoms will be used to demonstrate certain statistical tech
nigues. The atoms will be modeled wighfunctions, making / |
the atomic structure factor equal to one. This is actually very 0
similar to the case where all atoms are of the same type IF,|
since then it can be written as a single prefactor in the struc-
ture factor. Also, without loss of generality, the sides of the  FIG. 2. Plot of P,(|F|) (smooth ling as determined from the
unit cell are set to unit length. The positions of tNe=10  CLT and a histogram ofF4| (jagged ling. Since the daté are
data atoms are generated randomly. The reciprocal lattickescribed by the same distribution, it follows the same curve as for
vectors are Pr(IF).-

12:277(m M, ,ms) 4) should also be given by the above equation, since the data
S were formed in the same way. Each is plotted in Fig. 2 to

: . P demonstrate the fact.
where eachmis an integer, ané= 0 is excluded. The set of

k points used form a sphere i space with one half re-
moved, in order to account for the degeneracy in the struc-
ture factor wherk— —k. Also, since the data are generated As stated earlier, the goal is to determine the probability
in a program, its normalization is known aikdmay be set to distribution of E. Toward that end, it was necessary first to
one. Later, a prescription will be given for estimating it in afind the distribution of F,|, and now to find the distribution
general scenario. Finally, no thermal effects will be consid-of E,=(1/M){|F4(k)|—|F(k)|}2. Formally, the probability
ered. distribution forE, can be written as
Summarizing the situation, there avek points, at which

the dataF 4(k) is generated, which represents the square rootp e =fwd EdSTE.—{IE(K)=IE.(K2/MIP.(IF
of the intensity in an x-ray diffraction experiment. The SA (B 0 IFdABHIFo(Ol = IFOMIPRD,

A. Determination of P,(E,)

algorithm involves many trial guesses of the positions of the (7)
data atoms, which are used to calculate the magnitude of the
trial structure factorF,: whereP,(-) is used to denote the probability distribution of

(+). This expression may look somewhat unapproachable,
.oN but it is easily implemented numerically by going through
Fuk)=>, e, (5)  allowed values ofF,|, calculating{|Fg4|—|F}?M, and in-
=1 crementing the bin foP,(E,) by the valueP,(|F|)d|F. A

- ) . R representative plot ofP,(E,) for the sample values-
where 6;=k-r;. In this scenario where thg are generated _4 0 andM =310 is shown in Fig. 3.

randomly, it can be showfsee Appendix Athat 6; may be As will become apparent in the following section, it is
taken as uniformly distributed on (@72, so long as it is  yery important to know if there exist any correlations among
used in a 2r-periodic function(as is done heje Thus|Fi|  the'E,. Toward determining this, it is helpful to recall the
represents the magnitude of a sum of complex numbers, eagliyorithm that leads to values for thg . In a simulation, 3!
pointing in a random direction, and each of unit Iength.random numbers are generated Fq(lz). For any giveriz
Clearly, the distribution forF; is the same as that of an the N (compley terms in eaclF (lz) are of course inde ’en_
N-step two-dimensional random wa]k7]. The distribution dent. but 'tp' | lear th ttt Th h P
for the magnitude of, is just ent, but it is fessgegr a h# are. They are, however,
related a®; = ¢; +(k—Kk') -r;. Hence, so long as# k', the
2|Fy ) (k—k’)-Fj term will produce a random number uniformly
P(|Fe)= N exp(— |F|*/N). (6) distributed on (0,2). Thus each of thi&\M different 6; (k)
will act as an independently distributed random number. It
This has been compared to that resulting from a histogram dpllows that eaclF (k) will be made up of its owrN (com-
|F.|, made by randomly generating the phage3he agree- plex) random numbers. Since tiig(k) are independent, so
ment was quite good, but slight differences were noticeablewill be the E,, and hence there is no correlation among
Finally, it is pointed out that the distribution of thé | them. Finally, it is pointed out that while this argument goes
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FIG. 3. A representative plot d?,(E,) for the sample values L e o0
Fq=3.0, M=310, N=10. ik Lo
through smoothly for crystals of orthorhombic symmetry, it or b o’
requires amendments for other symmetries, such as th °o°
P2, /c, which will be discussed in the second half of the 008 | S
paper. (E%), & T
0.06 o<> L
B. Determination of P,(E) 0}"' e e e e e e s
I T
Because th&, are independent, determining the distribu- o 5
tion of E by convolution is very much simplified. In this vosl 4
case, the distributions for tH&, may be convoluted two at a '
time. This approach works well when there are no more thar . ‘ , ,
a few hundred points, but for any more, errors start build- 0 o1 02 03 04 05 06 o7
ing up in the several percent range. To deter this effect, i ® T
was found that convoluting the set kfpoints in batches of .
9 b FIG. 4. (a) Plots of(E) as found by convolution foN=10 and

50, for example, and then later convoluting these batches, :
. . =153 (lower dotg, 310 (line), and 511(upper dotf these dem-
W.Ou.ld reduce the errors in the mean and variance .baconstrate the sharpening dropoffidsincreases(b) Plots of(E?), as
within the 1% range. The results for the energy and variancg by convolution forN=10 andM =153 (lower dot3, 310
are plotted in Figs. @) and 4b) for several differen{k} sets (line), and 511(upper dots '
(M=153,310,511) withN fixed at 10; the averages were of '
course computed using the partition function
(E—up)?
P(E)~expy —————-
20¢

(€)

Z(T)~§ P.(E)e E/T. ®)

It was observed that for largM the energy curve made Finally, it will be noted that this CLT approximation is only
sharper drops, as it approached zero. These will serve asraasonable for energiesug* og .
basis of comparison to the SA runs in Sec. IlI C. There are thus two means of determiniRg(E) at our

An approximate distribution foE may also be calculated, disposal: the convolution approach, which is more difficult,
by making use of a variation of the usual central limit theo-but gives an accurate answer; and the CLT approach, which
rem (CLT). The reason this variation is called for is becauseis very quick, but is only reasonable for deviations of
the distribution for eaclk, is slightly different, owing to the roughly one standard deviation. For comparison, the two dis-
differentF 4 that they depend ofsee Eq(2)]. In Appendix B tributions are plotted together in Fig. 5. They are quite simi-
it is shown that the conditions necessary for this more genlar, and it takes a discerning eye to note that the convolution
eral CLT are indeed met, and so the usual Gaussian distribuesult is slightly skewed to the right, favoring higher ener-
tion may be used to descrilie The final necessary input is gies. Perhaps more instructive is to see what they predict for
the meanug and variancesg of the energy. This may be certain averages. In Fig(® is (E) for M=310, N=10 as
found by summing the means and variances of the individualound by convolution and through the CLT. This is typical
Ey, or alternatively(and more quickly by just measuring plot, with the result from convolution always giving a higher
them while randomly sampling the trial atomic positions value than that from the CLT; this follows from the afore-
(equivalent to a high-temperature measurement in). SA mentioned skewness. In Fig($ is (E?), for the same data,
Through either approach, the resultant distribution is just with the result from the CLT showing a conspicuously flat
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FIG. 5. Plot of P,(E) from convolution(line) and CLT (dots, 0.09
usingN=10, M=310. By construction, they have the same mean |
and variance. 0T

0.07 -

distribution.(Note that the CLT results could also have been
written in terms of error functionk. T
On afinal note, it is pointed out th& (E) is proportional oos| i o
to the number of states with that energy. The missing nor{E?).
malization factor is the just the total number of allowed
states. To calculate this it is necessary first to reguldrieg oos |
discretize the allowed atomic positions in the unit cell Yo
total sites. The number of positions fdt distinguishable
atoms on a lattice with/ positions(with V=>N) is V!/(V oot |
—N)!~VN, when multiple occupations are not allowed. In- |
cluding this normalization factor, the total number of states o o1 oz o3 os o5 o6 o7
is then juste™S(®)~ VNP (E), whereS(E) is the usual en- ®) T
tropy. FIG. 6. (a) The average energy fot=10, M =310 as found by
convolution(doty and through the CLTline). (b) The variance of
the energy foN=10, M =310 as found by convolutiofdots and
The results of the above section are here compared to Swrough the CLT(line).
runs; the same data will be used with=10, M=310. In  near this transition temperature. It is likely the case that there
Fig. 7(a) the average energy is plotted along with the resultare many measurements Bfat equilibrium and in a non-
found by convolutiofalready shown in Fig.@]. Of note is  equilibrium state; this could well lead to the large variations
the closeness of the two plots for high energies, which conseen in(E?).. It seems less likely that these variations are
tinues down tor ~0.05. This temperature is significant since due to a susceptibility that is intermittently present.
it is close to where the acceptance ratio is near zero, as
shown in Fig. Tc). It is at this point that there is a sudden D. High-temperature limit
drop in the energy in the SA approach, and has been likened | the high-temperature limit, nearly every configuration
to a phase transition by some authors. What appears to h€ accepted in the Metropolis schefisee Eq(3)], and so the
happening is that near that temperature the acceptance ragmpling of an energy is proportional R}(E). In the case
is so low that once it finds a low energy, it does not havewhere P,(E) is sharply peaked about some characteristic
enough opportunities to escape to a higher energy to eveinergy(as in this problem the highT averages are deter-
recover. Thus it is not able to explore a representative pormined by the behavior oP,(E) near the peak. In this case,
tion of its phase space, and it effectively makes a transitionhe average energy may be found diredilging Eq.(8)],
to a nonequilibrium state. In earlier observations of this pheand the variance may also be easily calculated; complica-
nomenon, the origin of the transition was not at all clear. Intions arise when there are correlations amongghéas with
addition, certain authorésee references within Ref14]) other symmetrigs
have argued for cooling schedule formulas based on equilib- The highT averages will be found by uniformly averag-
rium identities; what was found here is that these formulasng over the trial positions, i.e., by averaging with respect to
lose their basis past this “phase transition” point. P.(E). With =1, the limiting average energy is
The variance also presents some interesting behgseéer L 1
Fig. 7(b)]. When calculated via convolution, it shows a _ _ > 2 -
smooth decline as the temperature is lowered. However, <E>_M% <Ek>_N+M% [IF (1= aNIFg(]1
when measured using SA, it shows pronounced fluctuations (10

pasagl 2 WY

C. Simulated annealing results
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Also, since theE, are uncorrelated, as shown earlier, it is
possible to calculate the variance straightforwardly. Ao I

» <Ek>) _S (B2 (EL)? ;
{k} {k} I

1
(EDe= 2 (ExEw)— —
{k,K'} M

1 N
- - 2
MZ[NM )2 Fak) G

—Nﬁ% |Fd(|2)|+MN2]. (12)
k 1

For the case oN=10, M =310, the above formulas pro- ‘,\j'
duce the value$E)~4.30 and(E?).~0.0905. These num- of v = - ” - - o
bers should be compared with 9.1.. and0.08QL. . ., re- (@ T

spectively, which were obtained from a SA run at high
temperature. The agreement improves quickly for latger 03
For example, folN=20 the error in the energy is close to

1%. Furthermore, these may be averaged over with respe: oas |
to F4, to obtain results for an average crystal of this sym-
metry. For example, in this cag&)=(2— #/2)N. Finally,
the results may be easily extended to other cost function
[18] besides Eq(2) (but with the same crystal symmetry
For example, those of the formHy|P—|F{")9 (p,q inte-  (E?), o5}
gers;p>0, q>1) may be readily found.

o1k

E. Accuracy of the solution o‘,bvg ------- ey
As the temperature is lowered and the energy decreases, 00s |-
may be reasonable to write the data and trial structure factor i
as ME . . . . .
[ (18] 02 03 0.4 05 0.6 07
N R N . (b) T
Fok)=2, e, Fikj=2 e*™80 (12
=1 j=1 0.9 T T T T T o o
whereAr is a random deviation. It is a practical idealization o Lo )
to think of the trial position as hovering about the correct o7} .
position of a data atom. Indeed, for any given run, it may be e
the case that several atoms lie where a single one should, « er o
that they bear some incorrect but symmetrical arrangemer % 0s | e
to where the atoms should be. These special situations ai 5 o
expected to be subsumed in the following averaging proce = *f o
dure. sk o
The fluctuation of the position of thgh atom is modeled N
by a Gaussian distribution with standard deviatien ozp
—_— 01}k °
P, (AT )= —— 157" 13 :
A= 2 ) ) (13 B

In this section an average input crystal will be studied, mean- gig 7. (3 Average energy by convolutiofiine) and by SA
ing that eachr; will be uniformly averaged over the unit cell. (goty. (b) Variance by convolution(ine) and by SA(dots. (c)

Using angular brackets to denote the averages oaadAr, Acceptance ratio in the SA run.

the energyEq. (2)] becomes

1 sampled randomlyk-Fj is uniformly distributed on (0,2).

(E)= _2 {2N=2(|F4||F )} (14  Also, the distribution ofnzk-A_T [i.e., P, ()] is simply a
M1 zero-mean normal distribution with standard deviatign

since for any value ok and o (Fd?=(F{?=N. The =glk|. Thus the goal now is to calculate

problem has thus become one of determining the correlation

(|F4llF]), and will be pursued numerically. Since tfieare €(y)=2N=2(|F4[|F|): ., (15
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FIG. 8. (a) e(y) for an ideal orthorhombic crystal witN=10
atoms.(b) E(o) for N=10 andM = 310.

by samplingk-r from (0,27) and usingP,(7) to samples.
This was done foN=10, M=310 and the result is dis-
played in Fig. 8a). Due to the sharp dropoff of this curve for
y~1.0, itis clear tha{F4(k)| and|F (k)| can remain cor-
related only up toor~|k| . Finally we note thak(y) dis-
plays the expected limiting behavior:

e(y—2)=(2—ml2)N, (16)

e(y=0)=0. (17)

Now that this has been determined, all that is necessary
calculateE( o) is a data sefk}. Using the same set as for
M =310 (see Fig. 7, the relation

1 >
B(0)= 22 e(olk) (18)

leads to the result shown in Fig(t8. This is very interesting
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of a unit cel). This curve was also computed fd =153

and 511 and showed only minor differences, although it
tended to become steeper for largdr. To the authors’
knowledge, this is the only time an estimate of the error as a
function of temperature has been given in a simulated an-
nealing application. Finally, we note that this situation is
analogous to crystalline melting, as explained by the Linde-
mann criterion. There it is also the case that the gradual
increase in the atomic deviations leads to a sudden drop in
the coherence.

F. Determination of A

As mentioned earlier, the parameters updated stochas-
tically [1,19], with the new value being accepted according
to a Metropolis scheme. This kind of approach is necessary,
since its value cannot be known beforehand. An alternative
would be to averagéiE/dN)=0 with respect toP,(|F|).

For the case of orthorhombic symmetry, the result is easily

seen to be
1\ﬁ N
N= o0 N% |Fa(K)],

which for an average crystal becomgs=7/4 (N.B.: the
average ovefF| is the same as that ovH¢,|). It is signifi-
cant that this does not coincide with the known correct value
of A=1. This discrepancy is due to ignoring correlations
between F4 and|F,|, such as were discussed in the preced-
ing section[cf. Eq. (12)]. Upon allowing for such correla-
tions, the value foi valid for all temperatures is

(19

> (IFdIFd)
e
> (F)

{k}

(20)

and is easily checkeflising Eq.(6)] to interpolate between
the highT result ofA = 7r/4 and the lowT result ofA =1. As
the temperature is lowered, the increased correlation between
|F4l and|F,| appears in the increased valueXaf

In Sec. Il B where(E(T)) was found by convolution and
by approximation, only a single value af=1 was used.
Hence, in a simulation whene is updated stochasticallas
is always the case with real datahose graphs cannot be
used for comparison. To properly predict the equilibrium be-
havior in this scenario, one would need to kn®\E) for
all A used betweenr/4 and 1. As it turns ouft18], the only
teignificant difference between t&(T)) found by convolu-
tion using different\ is that the overall scale of the graph is
changed at high temperatures; this would easily follow from
a generalization of the results in the preceding section. More
interesting is the behavior &f(T) in a SA run in which\ is
updated. Again usingN=10 and M =310, the result is
shown in Fig. 9a). To gauge the location of the transition,
(E) from the same SA run is plotted in Fig(l9, along with

because it shows that once the energy begins to drop, thibe convolution results for the energy fare=1,7/4; as ex-
positions are already quite localized. For example, in Figpected the SA result coincides with the=7/4 result for

7(a) for M=310, when(E) is about half its plateau value,

high T. These results vindicate E(RO), since it shows that

0~0.02; here the positions are localized to within aboutwhen the energy drop3, increases, which means that cor-
+ 2% of their correct valueéneasured with respect to a side relations betweefF 4| and|F,| increase; it seems to be slow



5138 MICHAEL F. ZIMMER AND WU-PEI SU PRE 58

FIG. 10. GgH,,0, in a unit cell, viewed along tha axis.

these data, the structure has been solved by using the SA
algorithm[1] (as well as by the direct meth¢d]). A picture

05 { . of the molecule is given in Fig. 10. Throughout this section,
bﬁa a simplification was made by taking the sides to be mutually
° o1 pys 03 v o5 Py e perpendicular; the reciprocal lattice vectdrsvill thus also
(0) pe be given by Eq(4). The exact calculation only slightly im-
proves the results, but can also be doh@).
FIG. 9. (a) )\(T) for N=10, M=310; the increase at low The structure factor may be written as

marks an increase of the correlation @F4||F/). (b) E(o) as

generated by convolution for=1 (line), A= 7/4 (dot9, overlaid LN
with the result from SA where. was updatedline marked with F(k)= E e'
+). In all casesN=10, M =310. =1

=t

N 4
=2 X e, (21)
j=1 m=1

, ) ) L , where, suppressing thedependence of thé.(j),
in converging to its correct value of=1. This is logical,

and is also consistent with the decrease &r small vy, i.e., 6,= K- f,

large(|Fg4||F,|). Thus the increase of appears to be a nec-

essary condition for a solution to be found. Finally, we note 6,=—6,,

that the convergence of to its correct value of 1 happens (22)

only for very small temperature. This slowness most likely
also occurs with the real data, and is presumably the cause 0 :E(k FKa)+ (— Ky Ky, —kg) T
for the different scalings offF 4| [see Sec. IV and Ed33)]. 8T\ hs S

0,=— 63.
IV. THE C 14H,,0, MOLECULE 4 3

In this section the molecule gH,,0, will be examined, A little algebra leads to

using some of the techniques introduced earlier. The data, N
which were supplied by J. D. Korp, have monoclinic struc- F(K) =4 cod 8+Kk.v.)coq — 8+ KiX: + Kaz: 23
ture with P2, /c symmetry;a=7.97 A, b=15.29 A, andc (k) 121 L0+ kayj)cod X +kaz)), (23

=5.84 A, with 3=92.53°. The number ok points (or re- _ o
flectiony was M = 1222. Since the number of formula units Whereé=m(m,+mgz). The most important feature of this is
per cell isZ=2, there are a total of 40 atoms per unit cell, thatk- r has been split between two cosines. Recall that for
although onlyN=10 are independent. The hydrogen atomsthe orthorhombic symmetry, for a given selection of trial
were ignored, and oxygen atoms were modeled as carbgoositions, each term in the sum f&r(k) was independent
atoms; a refined calculation could treat them as distinct. Witmot only from all other terms in the sum, but from all other
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terms in all the otheF(k’). Following the same train of
thought, eachF;(k) could be approximated via the usual
CLT, since the mean and variance of each term in(E8§). is s
finite, and the variance is nonzero.
The situation is different when comparing structure fac- wl
tors with differentk. Here we considek=(k;,ks,k3) and

Izr:(ki,kz,ké) with m,+mj3 even, so that () »}
N

F(k)=42, cogkay;)cogk,x;+ksz)), 20
=1

| (24) ol

F(k’)=4_§‘,1 cog koy;)cos kix; +k3z)). .

1= 0 0 0:2 0?4 DjS o:s 1' 1f2 1f4 116 1f8 2
(a) T

While all the terms within a givefir are independent from
each other, they will be correlated with one other term in the 12 ; . . . . . . . .
otherF. This is due to the common cdsgy;) term. The end
result of this like term is that correlations exist betwdgn s |
with the samek, and differentk;, k;. To complicate mat-
ters, there are also correlations betwdgnwhen the pair
(kq,ks) is the same, andl, differs. To demonstrate the ex- v
tent of this effect, when it is ignored ai®}(E) is calculated
by convolution as before, one finds at high temperatlie X ros|
~57.9 and(E?),~2.04. On the other hand, a random sam-
pling (i.e., a SA run at very highil) shows(E)~57.5 and

(E?),~2.37. Because of this discrepancy, and also becaus
our point has already been made regarding the “phase tran

sition,” we will not pursue calculating, (E) for these data. 095 -
The mean and variance found at high temperature will be
used to define a Gaussian approximationRg(E) [as in Eq. 09 . : : s s s : s -

02 04 06 08 1 12 14 16 1.8 2

(9)]; the temperature-dependent energy and variance wil

then be compared to a SA run. There will be 1200 updates

(700 updates for the high temperatyresthe entire unit cell FIG. 11. (a) Plot of (E(T)) as found by SA(line) with \ up-

before loweringT by a factor of 0.9. In this cask is sto-  dating, and that generated from a Gaussiafdiits. (b) Plot of A

chastically updated. In Fig. 18 is the result fo{ E(T)); on  versusT, demonstrating the increased correlation between the data

the same graph is plotted the Gaussian approximdtieimg  and trial atomic positions &b is decreased.

a measurement of the mean and variance at high tempera-

ture). Although the minimum energy reached by the SA is -

still about 14% of the initial energy, it is still quite a good F(k)=42 cosf,co,. (26)

solution(as will be seen in the next sectioMhe dependence :

of the energy on the average error of the solution will beThe two cases are the followinét) both 6, and 6,#0; (2)

discussed in the next section. Also, the acceptance ratio aSeither 6, or 6,=0. F(E) may again be approximated via the

function of temperature was very similar to that for the ideaICLT' but its specific form depends on the above cases. In

case. o , case(1) both cosinegor sine$ contribute when the mean
_In a manner similar to what was done in E40), the 5 variance of each term are calculated. In ¢asenly one

high-temperature limit of the energy can be calculated by qgjne is present, so the variance is lar§éthenm,+mj is

recourse to a CLT approximation of the structure factorsgyq only casdl) is preseni. Thus, according to the case
Since this is only an average we seek and not a distribution,. 1 2 we have ’

the correlations between some of g are irrelevant here.

The only new complication is that averages of powérg 2N
will have two values, depending on which subclass{ldf (IFhy=0i\—
they belong to. Denoting

T

(27)

F2y=o?N, 28
0aj)=— 8+ kX +kaz; (Fo)=oi 28

(250  whereo;=2 ando,=22. When account is made of these
Op(j)=6+kay;j, two cases and the average energy is calculated via

the structure factor is nowagain suppressing thedepen- _ i 2 2 2
fonce (B)= 2 (IFd*=2MFFD+N(FD) (29
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a value ofE~57.8 is found, which is to be compared to the 0,— 0,4k (AX,0A2)= 0+ o, (30)
already mentioned value of 57.5 found from a random sam-
pling measuremerfi.e., SA at largerT). -

Finally, we point out that it is now possible to calculate 0p— Opt+K-(0,Ay,0)= 6+ ¢. (32)
what \ should be in the high-temperature limit, wheFg,|
and|F| are totally uncorrelated. Using ERO), we would  Using the same distribution as in EG.3), it follows that ¢
expect(without scaling|F4) that\ ~0.636. However, when  andy are described by zero-mean normal distributions with
the real data are usedee Fig. 1ib)], we find x\~0.930,  standard deviationsr=2mo\me+m2 and B=2mo|my|,
implying that the scale diFq| is about 1.46 times larger than egpectively. As before, because each of the three compo-
of [Fy|. Interestingly, at low temperature SA leads X0 nents ofr is uniformly distributed on (0,1), the phases
~1.20, while Eq(20) givesh=1. As opposed to the ratio of g will be uniformly distributed on (0,2). A simula-
1.46, these two have a ratio of only 1.20. This serves tQjon that would measurg(s) would thus have to repeatedly
support the already clear observation that the true minimung s\ two random numbers fat, andé,, and then two more

energy has not been reached in the SA run; this may ultiz,, ¢ and . As it tumns out, a simplifying feature arises
mately be due to the limited accuracy of the dg#g. because of the identity

Accuracy of the solution

o (cog O+ @)cos O+ ),y

The accuracy of the solution just found by SA can be
assessed in a manner similar to that in Sec. Ill E. However, =exp{— (a’+ B%)/2}cosh, costy,. (32
because the daf& 4 must somehow be taken into account,
some approximations must be made. In this case, the datgis allows us to make the approximation that drawing ran-
will be used to provide the appropriate overall scale of thedom numbers with the same distributions as@andy may
energy, so that it may be more easily compared to SA runsse replaced by setting=0 in Eq. (32), and using for the
For this approximatiorfy4 will again be related td=; as in  distribution of ¢, P,(¢), a zero-mean normal distribution
Eq. (12. with variance y?= ?+ 82. The combinatione®+ 82 does

Following the presentation of Sec. Il E, the positions of not occur throughout the second moment in B3%), so this
the trial atoms will differ from the exact positions by a fluc- remains an approximatio('a|though it is numerica”y accu-
tuation A rate. It follows then,

)
%]
N

Z cog 6,5+ ¢)cosby,
j=1

N

> coq 6,+ ¢)cosb,
=1

—4

N
> c0s6,c0s6,
=1

e(y)=<cz{4

N
> cosf,cosb,
1

= 2c2<|:$>—32c2<

> . (33

The constant=1.46 is the scaling factor discussed at theacteristic scales. Denoting the averai@bby k*, the o that
end of the preceding section. It is introduced to s¢El¢to  would correspond to the mediaB value would beos*
the same size g& 4|, so the energy can be compared to that= y*/k*  (Thus as morek points are included ifk}, the
from SA runs. smaller o will be when the energy starts to drop, or go

Recapitulating,e(y) can now be calculated by drawing through an apparent phase transitjon.
2N random numbers for all of the, and 6,,, with a uniform

distribution on (0,2r), andN more for ¢ with the distribu-
tion P,(¢). Repeating this a number of times eventually
leads to Fig. 1@), which is seen to be quite similar in shape A number of results have been presented for both under-
to that obtained for the ideal crysteh Fig. 8@)]. In con-  standing the algorithm and providing tools to analyze it. It
junction with Eq.(18), the energy as a function of the stan- should be emphasized that very little has hitherto existed to
dard deviation of the positions of the trial atoms can be dedo so; most of the results have been of a formal nature, not
rived; the result is shown in Fig. 8. With this graph itis  lending themselves to immediate applicabilityith the ex-

now possible to assess the errors in position for this data setgeption of heuristic cooling schedujes

there exists no competing method. This is significant since it The apparent “phase transition” that regularly appears in
tells us that once the energy curve begins to diopFig.  the energy versus temperature graphs is now seen to be a
11(a)], we can be assured that the error in position, on avereonsequence of the system falling out of equilibrium, and
age, is already within a few percent of the length of the sidggetting stuck in a portion of its phase space. It is not a con-
of the crystal. Also, the sharp drop #{v) acts similarly to  sequence of any underlying “Hamiltonian” which exhibits

a Heaviside function, and can be used to relate several chgphase-transition-like behavior. The expected equilibrium be-

V. CONCLUDING REMARKS
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FIG. 12. (a) E(’y) for C18H2202. (b) E(O’) for C18H2202.
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m is an integer, andr=(X;,X»,X3), Where eachx is
uniformly distributed on (0,1). First, it is obvious that if
f is a 2m-periodic function, thenf(2mmx;+---)=
f(2mx,+ - - ). Thus, setting/;=2mX; , the problem now is
to determine ify;+y,+ys; is uniformly distributed when
used inf. We shall calculate the distribution of this sum, by
convoluting them two at a timé.e., first p=y;+VY5).

Starting from

2w 2
Pr(n)=f dy1J dy, 8(n—(y1+Y2)P (Y1) P (Y2)
0 0
(A1)

it is straightforward to show that

27P (n)=n0(n)0(27— )+ (47— 1) 6(47—n)
X 0(p—27). (A2)

Since n will be used in a 2r-periodic function, the part on
(27,47) may be folded over onto (0. So when used in
this context,P,(7)=(27) 1. What has been shown is that,
when used in a zZ-periodic function, the distribution of two
variables uniformly distributed on (0 (i.e.,y,+Yy,) pro-
duces another variable uniformly distributed on 8.e., 7).
This leaves us the task yet of finding the distributionspf
+y3;. However, this is the same problem as with+y,,
and we conclude that the distribution gf+y,+ys (or
k-r) may be taken as uniformly distributed on (@)2when
used in a 2r-periodic function.

APPENDIX B

In this section a generalization of the usual C[Z0] is
discussed, as it requires special conditions for it to hold. It is
of use when the terms in the sufthat is being approxi-
mated do not all have the same probability distribution, as
Jwith the the sum of [see Eq(2)].

havior can be calculated beforehand by convolution. If th
system did not fall out of equilibrium it would follow this
path. It can also be calculated in an approximate fashion
through a generalized central limit theorem.

Finally, the dependence of the energy on the average stan-
dard deviation(between the trial positions and the correct
solution has been calculated for two examples. This pro-

vides the user with the valuable information of how close the s}

trial positions are to the real atomic positions.
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APPENDIX A

The problem is to find the distribution &7 when it is
used in the functiore’®", wherek=2sm(m;,m,,mg), each

Let Xy, Xy, ..

. be independent variables satisfying

FIG. 13. Plot of IlR(n) versus Im from Eq. (B2), for the ideal
crystal withM =310 andN=10.
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(where& denotes expectation valuand such that 1 0
n s> XN, (B4)
R(n)= (n)321 X3} —0 as n—e, (B2
7 J whereN(0,1) is a normal distribution with zero mean and
where unit variance.
. N In Fig. 13, IrR(n) is plotted versus Imfor the case of the
5 2 ideal crystal withN=10, M=310, andn=1,... M; n la-
a(n) =var( ; XJ) :; Iy - (B3 pels thek vectors. This establishes th&(n) vanishes as
—oo0, and thus that this CLT may be used to approximate the
Then sum of theE, .
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