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Statistical characterization of simulated annealing applied to the x-ray phase problem

Michael F. Zimmer and Wu-Pei Su
Department of Physics and Texas Center for Superconductivity, University of Houston, Houston, Texas 77204

~Received 13 May 1998!

This paper examines the statistical behaviors of variables in the simulated annealing~SA! algorithm when it
is used to solve the x-ray phase problem. The results found help remove ambiguities of its application, and
clarify its analogy to statistical mechanics. The x-ray phase problem consists in discovering unknown atomic
positions of a crystal, given its x-ray diffraction data. SA solves this problem by selectively accepting random
trial atomic positions; a cost function is used to measure the nearness of the experimental structure factor to
that from a trial solution. The algorithm treats a cost function as an~artificial! energy, a control parameter as
a ~artificial! temperature, and recovers an optimal solution by lowering the temperature through a cooling
schedule. In this paper the probability distribution of the energy is numerically calculated, and provides the first
two moments of the energy versus temperature; an approximate solution is also provided. This result shows
that the sudden drop in energy often seen in SA runs is actually a transition to a nonequilibrium state. The
average configuration error for a given energy is determined, and provides a measure of the quality of a
solution. Analytic estimates are made of the high-temperature behavior, which are of use in determining the
cooling schedule. Finally, the dependence of the normalization factor for the data is calculated and shown to
mirror the solution quality. These results are applied to an ideal crystal with orthorhombic symmetry, and also
to real data on the C18H22O2 molecule~with P21 /c symmetry!. @S1063-651X~98!14210-1#

PACS number~s!: 02.70.Lq, 61.43.Bn, 42.30.Rx, 64.90.1b
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I. INTRODUCTION

The x-ray phase problem consists in determining
atomic positions of an unknown crystal, given its x-ray d
fraction data and perhaps other information on the cry
structure. The ability to solve for unknown structures is
great practical importance. For example, the discovery
new proteins could help significantly in the design of ne
drugs, perhaps for fighting cancer. It has been demonstr
@1# that this problem is amenable to the simulated annea
~SA! algorithm developed by Kirkpatricket al. @2#. The
method centers around a suitably defined cost function~or
energy! that defines the nearness to a target solution. In
case, the energy essentially measures the difference bet
the experimentally determined structure factor and that
rived from a trial configuration of the atoms. A Monte Car
algorithm @3# is used to search these trial configuration
where the role of the temperature is taken over by a con
parameter. The temperature is lowered according to a c
ing schedule, forcing the system to explore lower-ene
configurations; in this way an optimal solution is found. A
other technique that has been successful on the phase
lem is the direct method; this approach is reviewed by Wo
fson @4#.

The purpose of this paper is to discover how the simula
annealing algorithm works in this application, so that it m
be better applied to the x-ray phase problem. One wo
expect that results found here would carry over to some o
myriad applications; examples include very large scale in
grated~VLSI! chip design@2,5#, the traveling-salesman prob
lem @2,6#, spin-glass ground states@7#, image analysis@8,9#
and pattern recognition@10#, graph partitioning@11#, code
generation@12#, least-squares fitting of many unknowns@13#,
etc. In general, such a stochastic approach is efficient in s
ations where it is~practically! impossible to search ever
PRE 581063-651X/98/58~4!/5131~12!/$15.00
e

al
f
f

ed
g

is
een
e-

,
ol
l-

y

ob-
l-

d

ld
ts
-

u-

configuration, or where traditional methods fail, perhaps
cause of a large number of local minima in the cost functi
It should be pointed out that beyond the original formulati
@2#, works of a theoretical nature are few and scattered.
example, work on cooling schedules has produced a p
that at sufficiently slow cooling, the exact solution will b
found with probability one@8,14#. Heuristical cooling sched-
ules offer improvements when resources are limited, but
general picture has been painted to say which is best. T
have also been configuration space analyses that found
dence for hierarchical statistics@15#. Also, the phase transi
tion behavior of certain models has been studied with
application of the so-called replica trick@16#. While these
results are important in their own right, they do not direc
bear on clarifying matters in the application of SA to th
phase problem. For example, one would like to know wha
going on when the energy drops suddenly, in a manner re
niscent of a phase transition. It is not known: if this is
analog of a phase transition; if it is a nonequilibrium effe
if it strongly affects the quality of the final solution; if i
would be better to try to avoid it, or even if it is avoidable.
short,any informationthat can be used to help understand
predict the SA algorithm is of practical use and should
pursued, especially when one considers how wide-rang
the applications are.

A number of results are presented here, most importan
which is the determination of the probability distribution
the energy. This allows the average energy and its varia
to be determined as a function of temperature. To the
thors’ knowledge, this has not been done on any prob
studied with SA. In this case, it allows us to show that t
apparent phase transition is a nonequilibrium effect, due
the system getting stuck in a low-energy configuration. T
happens at the same point as the vanishing of the accept
ratio. In addition to determining the energy distribution b
5131 © 1998 The American Physical Society
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5132 PRE 58MICHAEL F. ZIMMER AND WU-PEI SU
convolution, a quick prescription is also given for its a
proximation. In the limit of high-temperature sampling, a
curate estimates are made of the energy and its varianc
addition to giving information for the initial temperature
they also provide a means for quickly estimating the norm
ization factor between the structure factor from experim
and theory. The temperature dependence of this norma
tion is found to mirror the accuracy of the solution. Final
it is demonstrated how this accuracy can be computed
function of energy. The above techniques are introduced
tested on an ideal crystal with orthorhombic symmetry
Sec. III. Many of them are reapplied in Sec. IV, for a re
crystal withP21 /c symmetry.

II. THE X-RAY PHASE PROBLEM AND SIMULATED
ANNEALING

The phase problem consists in determining the atomic
sitions of an unknown crystal given its structure factor da
Other information such as the number and types of the c
stituent atoms may or may not be available. The struct
factorF, which is the Fourier transform of the electron de
sity (r),

F~kW !5E d3rW r~r !eikW•rW, ~1!

is measured at a numberM of reflections~or k points!, where
kW is a reciprocal lattice vector for the given crystal group; t
position vectorrW is integrated over the unit cell. Howeve
because the intensity}uFu2 does not contain phase informa
tion and becauseM is always finite, it is not possible to
exactly invert the transform and determine the unknownr.

As mentioned in the Introduction, there are a number
approaches that have been taken to overcome this lac
information. The one studied here is the SA algorithm, wh
seeks the solution by stochastically searching the spac
available configurations. At the heart of the algorithm is t
cost function, or energy, which measures the goodness o
~or quality of the solution!. For this problem it may be de
fined as

E5(
$k%

Ek[
1

M(
$k%

$uFd~kW !u2luFt~kW !u%2 ~2!

so thatE50 corresponds to the exact solution (l is a nor-
malization parameter!; other qualitatively similar forms forE
will be considered in a later section. Here,uFdu is the mag-
nitude of the structure factor as measured in experiment,
uFtu is the computed version, based on a trial configuration
may appear that this could be straightforwardly solved
steepest descent or a related technique, but there is a se
difficulty in that there are multiple minima in the functio
E($rW%) ~where$rW% is the set of positions of the atoms!. These
minima can be shown using anFd(kW ) ~with M5126) calcu-
lated from an artificial two-dimensional circular molecu
comprised of eight atoms. For example, in Fig. 1~a! is shown
a trial configuration for this molecule, in which all the atom
are in the correct position, except for the one that is allow
to move along a line. The energy for the system as a func
of this movable atom is given in Fig. 1~b!. Aside from the
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lowest point corresponding to the correct position of the f
atom ~as it should!, the most notable feature is the presen
of multiple minima. The smallest scale in this graph shou
scale with the inverse of the maximumukW u in the data set.

The SA algorithm was designed to avoid these metasta
minima by occasionally allowing the search to move uph
in energy. The algorithm is based on an analogy to statist
mechanics, in which each configuration of the system~i.e.,
arrangement of the atoms! is assigned a Boltzmann probabi
ity exp@2E($rW%)/T#, whereT is normally the temperature, bu
is here just a control parameter~the Boltzmann constant is
set to one throughout this paper!. This distribution is recov-
ered by Monte Carlo sampling. For example, using the M
tropolis scheme, an update from an energyE to E1DE is
accepted if

m<min@1,exp~2DE/T!#, ~3!

where m is a random number on the unit interval. If th
sampling is ergodic, the updating will sample configuratio
with a Boltzmann weight. Upon loweringT ~according to

FIG. 1. The positions of the data atoms are indicated by
eight circles. Seven of the trial atoms are fixed in the correct p
tions ~filled circles!; the eighth atom~unfilled circle! is allowed to
move along the dashed line.~b! The energy as a function of positio
as the free atom moves along this line.
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PRE 58 5133STATISTICAL CHARACTERIZATION OF SIMULATED . . .
some cooling schedule!, the Boltzmann weighte2E/T favors
lower-energy configurations, and thus improves the qua
of the solution. An obvious advantage this technique
over steepest descent, for example, is that higher ene
may be explored, and thus becoming trapped in a local m
mum is less serious of a danger. In addition, the parametl
will be perturbed~as the energy was!, and new values will be
accepted according to the same Metropolis criterion.

III. IDEAL CRYSTAL

In this section the relatively simple case of a crystal w
orthorhombic symmetry, no internal symmetry, and pointl
atoms will be used to demonstrate certain statistical te
niques. The atoms will be modeled withd functions, making
the atomic structure factor equal to one. This is actually v
similar to the case where all atoms are of the same ty
since then it can be written as a single prefactor in the st
ture factor. Also, without loss of generality, the sides of t
unit cell are set to unit length. The positions of theN510
data atoms are generated randomly. The reciprocal la
vectors are

kW52p~m1 ,m2 ,m3!, ~4!

where eachm is an integer, andkW50W is excluded. The set o
k points used form a sphere ink space with one half re
moved, in order to account for the degeneracy in the str
ture factor whenkW→2kW . Also, since the data are generat
in a program, its normalization is known andl may be set to
one. Later, a prescription will be given for estimating it in
general scenario. Finally, no thermal effects will be cons
ered.

Summarizing the situation, there areM k points, at which
the dataFd(kW ) is generated, which represents the square r
of the intensity in an x-ray diffraction experiment. The S
algorithm involves many trial guesses of the positions of
data atoms, which are used to calculate the magnitude o
trial structure factorFt :

Ft~kW !5(
j 51

N

eiu j , ~5!

whereu j5kW•rW j . In this scenario where therW j are generated
randomly, it can be shown~see Appendix A! thatu j may be
taken as uniformly distributed on (0,2p), so long as it is
used in a 2p-periodic function~as is done here!. Thus uFtu
represents the magnitude of a sum of complex numbers,
pointing in a random direction, and each of unit leng
Clearly, the distribution forFt is the same as that of a
N-step two-dimensional random walk@17#. The distribution
for the magnitude ofFt is just

Pr~ uFtu!5
2uFtu

N
exp~2uFtu2/N!. ~6!

This has been compared to that resulting from a histogram
uFtu, made by randomly generating the phasesu. The agree-
ment was quite good, but slight differences were noticea
Finally, it is pointed out that the distribution of theuFdu
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should also be given by the above equation, since the
were formed in the same way. Each is plotted in Fig. 2
demonstrate the fact.

A. Determination of Pr„Ek…

As stated earlier, the goal is to determine the probabi
distribution ofE. Toward that end, it was necessary first
find the distribution ofuFtu, and now to find the distribution
of Ek5(1/M )$uFd(kW )u2uFt(kW )u%2. Formally, the probability
distribution forEk can be written as

Pr~Ek!5E
0

`

duFtud@Ek2$uFd~kW !u2uFt~kW !u%2/M #Pr~ uFtu!,

~7!

wherePr(•) is used to denote the probability distribution
(•). This expression may look somewhat unapproacha
but it is easily implemented numerically by going throug
allowed values ofuFtu, calculating$uFdu2uFtu%2/M , and in-
crementing the bin forPr(Ek) by the valuePr(uFtu)duFtu. A
representative plot ofPr(Ek) for the sample valuesFd
54.0 andM5310 is shown in Fig. 3.

As will become apparent in the following section, it
very important to know if there exist any correlations amo
the Ek . Toward determining this, it is helpful to recall th
algorithm that leads to values for theEk . In a simulation, 3N
random numbers are generated forFt(kW ). For any givenkW ,
the N ~complex! terms in eachFt(kW ) are of course indepen
dent, but it is less clear that theu j are. They are, however
related asu j5u j81(kW2kW8)•rW j . Hence, so long askWÞkW8, the
(kW2kW8)•rW j term will produce a random number uniforml
distributed on (0,2p). Thus each of theNM different u j (kW )
will act as an independently distributed random number
follows that eachFt(kW ) will be made up of its ownN ~com-
plex! random numbers. Since theFt(kW ) are independent, so
will be the Ek , and hence there is no correlation amo
them. Finally, it is pointed out that while this argument go

FIG. 2. Plot ofPr(uFtu) ~smooth line! as determined from the
CLT and a histogram ofuFdu ~jagged line!. Since the dataFd are
described by the same distribution, it follows the same curve as
Pr(uFtu).
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5134 PRE 58MICHAEL F. ZIMMER AND WU-PEI SU
through smoothly for crystals of orthorhombic symmetry,
requires amendments for other symmetries, such as
P21 /c, which will be discussed in the second half of th
paper.

B. Determination of Pr„E…

Because theEk are independent, determining the distrib
tion of E by convolution is very much simplified. In thi
case, the distributions for theEk may be convoluted two at a
time. This approach works well when there are no more t
a few hundredk points, but for any more, errors start build
ing up in the several percent range. To deter this effec
was found that convoluting the set ofk points in batches of
50, for example, and then later convoluting these batch
would reduce the errors in the mean and variance b
within the 1% range. The results for the energy and varia
are plotted in Figs. 4~a! and 4~b! for several different$kW% sets
(M5153,310,511) withN fixed at 10; the averages were
course computed using the partition function

Z~T!;(
E

Pr~E!e2E/T. ~8!

It was observed that for largeM the energy curve mad
sharper drops, as it approached zero. These will serve
basis of comparison to the SA runs in Sec. III C.

An approximate distribution forE may also be calculated
by making use of a variation of the usual central limit the
rem ~CLT!. The reason this variation is called for is becau
the distribution for eachEk is slightly different, owing to the
differentFd that they depend on@see Eq.~2!#. In Appendix B
it is shown that the conditions necessary for this more g
eral CLT are indeed met, and so the usual Gaussian distr
tion may be used to describeE. The final necessary input i
the meanmE and variancesE of the energy. This may be
found by summing the means and variances of the individ
Ek , or alternatively~and more quickly! by just measuring
them while randomly sampling the trial atomic positio
~equivalent to a high-temperature measurement in S!.
Through either approach, the resultant distribution is just

FIG. 3. A representative plot ofPr(Ek) for the sample values
Fd53.0, M5310, N510.
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Pr~E!;expH 2
~E2mE!2

2sE
2 J . ~9!

Finally, it will be noted that this CLT approximation is onl
reasonable for energies;mE6sE .

There are thus two means of determiningPr(E) at our
disposal: the convolution approach, which is more difficu
but gives an accurate answer; and the CLT approach, w
is very quick, but is only reasonable for deviations
roughly one standard deviation. For comparison, the two
tributions are plotted together in Fig. 5. They are quite sim
lar, and it takes a discerning eye to note that the convolu
result is slightly skewed to the right, favoring higher ene
gies. Perhaps more instructive is to see what they predic
certain averages. In Fig. 6~a! is ^E& for M5310, N510 as
found by convolution and through the CLT. This is typic
plot, with the result from convolution always giving a high
value than that from the CLT; this follows from the afor
mentioned skewness. In Fig. 6~b! is ^E2&c for the same data
with the result from the CLT showing a conspicuously fl

FIG. 4. ~a! Plots of^E& as found by convolution forN510 and
M5153 ~lower dots!, 310 ~line!, and 511~upper dots!; these dem-
onstrate the sharpening dropoff asM increases.~b! Plots of^E2&c as
found by convolution forN510 and M5153 ~lower dots!, 310
~line!, and 511~upper dots!.
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PRE 58 5135STATISTICAL CHARACTERIZATION OF SIMULATED . . .
distribution.~Note that the CLT results could also have be
written in terms of error functions.!

On a final note, it is pointed out thatPr(E) is proportional
to the number of states with that energy. The missing n
malization factor is the just the total number of allow
states. To calculate this it is necessary first to regularize~i.e.,
discretize! the allowed atomic positions in the unit cell toV
total sites. The number of positions forN distinguishable
atoms on a lattice withV positions~with V@N) is V!/(V
2N)!;VN, when multiple occupations are not allowed. I
cluding this normalization factor, the total number of sta
is then juste2S(E);VNPr(E), whereS(E) is the usual en-
tropy.

C. Simulated annealing results

The results of the above section are here compared to
runs; the same data will be used withN510, M5310. In
Fig. 7~a! the average energy is plotted along with the res
found by convolution@already shown in Fig. 4~a!#. Of note is
the closeness of the two plots for high energies, which c
tinues down toT'0.05. This temperature is significant sin
it is close to where the acceptance ratio is near zero
shown in Fig. 7~c!. It is at this point that there is a sudde
drop in the energy in the SA approach, and has been like
to a phase transition by some authors. What appears t
happening is that near that temperature the acceptance
is so low that once it finds a low energy, it does not ha
enough opportunities to escape to a higher energy to
recover. Thus it is not able to explore a representative p
tion of its phase space, and it effectively makes a transi
to a nonequilibrium state. In earlier observations of this p
nomenon, the origin of the transition was not at all clear.
addition, certain authors~see references within Ref.@14#!
have argued for cooling schedule formulas based on equ
rium identities; what was found here is that these formu
lose their basis past this ‘‘phase transition’’ point.

The variance also presents some interesting behavior@see
Fig. 7~b!#. When calculated via convolution, it shows
smooth decline as the temperature is lowered. Howe
when measured using SA, it shows pronounced fluctuat

FIG. 5. Plot ofPr(E) from convolution~line! and CLT ~dots!,
usingN510, M5310. By construction, they have the same me
and variance.
r-

s

A

lt

-

as

ed
be
tio

e
er
r-
n
-

b-
s

r,
ns

near this transition temperature. It is likely the case that th
are many measurements ofE at equilibrium and in a non-
equilibrium state; this could well lead to the large variatio
seen in^E2&c . It seems less likely that these variations a
due to a susceptibility that is intermittently present.

D. High-temperature limit

In the high-temperature limit, nearly every configuratio
is accepted in the Metropolis scheme@see Eq.~3!#, and so the
sampling of an energy is proportional toPr(E). In the case
where Pr(E) is sharply peaked about some characteris
energy~as in this problem!, the high-T averages are deter
mined by the behavior ofPr(E) near the peak. In this case
the average energy may be found directly@using Eq.~8!#,
and the variance may also be easily calculated; compl
tions arise when there are correlations among theEk ~as with
other symmetries!.

The high-T averages will be found by uniformly averag
ing over the trial positions, i.e., by averaging with respect
Pr(E). With l51, the limiting average energy is

^E&5
1

M(
$k%

^Ek&5N1
1

M(
$k%

@ uFd~kW !u22ApNuFd~kW !u#.

~10!

n

FIG. 6. ~a! The average energy forN510, M5310 as found by
convolution~dots! and through the CLT~line!. ~b! The variance of
the energy forN510, M5310 as found by convolution~dots! and
through the CLT~line!.
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Also, since theEk are uncorrelated, as shown earlier, it
possible to calculate the variance straightforwardly.

^E2&c5 (
$k,k8%

^EkEk8&2
1

M2S ($k%
^Ek& D 2

5(
$k%

^Ek
2&2^Ek&

2

5
1

M2H N~42p!(
$k%

Fd~kW !2

2NApN(
$k%

uFd~kW !u1MN2J . ~11!

For the case ofN510, M5310, the above formulas pro
duce the valueŝE&'4.30 and^E2&c'0.0905. These num
bers should be compared with 4.19 . . . and0.0801 . . . , re-
spectively, which were obtained from a SA run at hi
temperature. The agreement improves quickly for largerN.
For example, forN520 the error in the energy is close
1%. Furthermore, these may be averaged over with res
to Fd , to obtain results for an average crystal of this sy
metry. For example, in this case^E&5(22p/2)N. Finally,
the results may be easily extended to other cost funct
@18# besides Eq.~2! ~but with the same crystal symmetry!.
For example, those of the form (uFdup2uFtup)q (p,q inte-
gers;p.0, q.1) may be readily found.

E. Accuracy of the solution

As the temperature is lowered and the energy decreas
may be reasonable to write the data and trial structure fac
as

Fd~kW !5(
j 51

N

eikW•rW j , Ft~kW !5(
j 51

N

eikW•~rW1DrW ! j , ~12!

whereDrW is a random deviation. It is a practical idealizatio
to think of the trial position as hovering about the corre
position of a data atom. Indeed, for any given run, it may
the case that several atoms lie where a single one shoul
that they bear some incorrect but symmetrical arrangem
to where the atoms should be. These special situations
expected to be subsumed in the following averaging pro
dure.

The fluctuation of the position of thej th atom is modeled
by a Gaussian distribution with standard deviations:

Pr~DrW j !5
1

sA2p
expH 2

1

2
S DrW j

s
D 2J . ~13!

In this section an average input crystal will be studied, me
ing that eachrW j will be uniformly averaged over the unit cel
Using angular brackets to denote the averages overrW andDrW ,
the energy@Eq. ~2!# becomes

^E&5
1

M(
$k%

$2N22^uFduuFtu&% ~14!

since for any value ofkW and s, ^uFdu2&5^uFtu2&5N. The
problem has thus become one of determining the correla
^uFduuFtu&, and will be pursued numerically. Since therW j are
ct
-

s

, it
rs

t
e
or
nt
re

e-

-

n

sampled randomly,kW•rW j is uniformly distributed on (0,2p).
Also, the distribution ofh5kW•DrW @i.e., Pr(h)# is simply a
zero-mean normal distribution with standard deviationg
5suku. Thus the goal now is to calculate

e~g!52N22^uFduuFtu& r ,h ~15!

FIG. 7. ~a! Average energy by convolution~line! and by SA
~dots!. ~b! Variance by convolution~line! and by SA ~dots!. ~c!
Acceptance ratio in the SA run.
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by samplingkW•rW from (0,2p) and usingPr(h) to sampleh.
This was done forN510, M5310 and the result is dis
played in Fig. 8~a!. Due to the sharp dropoff of this curve fo
g'1.0, it is clear thatuFd(kW )u and uFt(kW )u can remain cor-
related only up tos'ukW u21. Finally we note thate(g) dis-
plays the expected limiting behavior:

e~g→`!5~22p/2!N, ~16!

e~g50!50. ~17!

Now that this has been determined, all that is necessar
calculateE(s) is a data set$k%. Using the same set as fo
M5310 ~see Fig. 7!, the relation

E~s!5
1

M(
$k%

e~sukW u! ~18!

leads to the result shown in Fig. 8~b!. This is very interesting
because it shows that once the energy begins to drop
positions are already quite localized. For example, in F
7~a! for M5310, when^E& is about half its plateau value
s'0.02; here the positions are localized to within abo
62% of their correct values~measured with respect to a sid

FIG. 8. ~a! e(g) for an ideal orthorhombic crystal withN510
atoms.~b! E(s) for N510 andM5310.
to

he
.

t

of a unit cell!. This curve was also computed forM5153
and 511 and showed only minor differences, although
tended to become steeper for largerM . To the authors’
knowledge, this is the only time an estimate of the error a
function of temperature has been given in a simulated
nealing application. Finally, we note that this situation
analogous to crystalline melting, as explained by the Lin
mann criterion. There it is also the case that the grad
increase in the atomic deviations leads to a sudden dro
the coherence.

F. Determination of l

As mentioned earlier, the parameterl is updated stochas
tically @1,19#, with the new value being accepted accordi
to a Metropolis scheme. This kind of approach is necess
since its value cannot be known beforehand. An alterna
would be to averagê]E/]l&50 with respect toPr(uFtu).
For the case of orthorhombic symmetry, the result is ea
seen to be

l5
1

2M
Ap

N(
$k%

uFd~kW !u, ~19!

which for an average crystal becomesl5p/4 ~N.B.: the
average overuFdu is the same as that overuFtu). It is signifi-
cant that this does not coincide with the known correct va
of l51. This discrepancy is due to ignoring correlatio
betweenuFdu anduFtu, such as were discussed in the prece
ing section@cf. Eq. ~12!#. Upon allowing for such correla-
tions, the value forl valid for all temperatures is

l5

(
$k%

^uFduuFtu&

(
$k%

^Ft
2&

~20!

and is easily checked@using Eq.~6!# to interpolate between
the high-T result ofl5p/4 and the low-T result ofl51. As
the temperature is lowered, the increased correlation betw
uFdu and uFtu appears in the increased value ofl.

In Sec. III B wherê E(T)& was found by convolution and
by approximation, only a single value ofl51 was used.
Hence, in a simulation wherel is updated stochastically~as
is always the case with real data!, those graphs cannot b
used for comparison. To properly predict the equilibrium b
havior in this scenario, one would need to knowPr(E) for
all l used betweenp/4 and 1. As it turns out@18#, the only
significant difference between the^E(T)& found by convolu-
tion using differentl is that the overall scale of the graph
changed at high temperatures; this would easily follow fro
a generalization of the results in the preceding section. M
interesting is the behavior ofl(T) in a SA run in whichl is
updated. Again usingN510 and M5310, the result is
shown in Fig. 9~a!. To gauge the location of the transition
^E& from the same SA run is plotted in Fig. 9~b!, along with
the convolution results for the energy forl51,p/4; as ex-
pected the SA result coincides with thel5p/4 result for
high T. These results vindicate Eq.~20!, since it shows that
when the energy drops,l increases, which means that co
relations betweenuFdu anduFtu increase; it seems to be slo
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in converging to its correct value ofl51. This is logical,
and is also consistent with the decrease ofe for smallg, i.e.,
large^uFduuFtu&. Thus the increase ofl appears to be a nec
essary condition for a solution to be found. Finally, we no
that the convergence ofl to its correct value of 1 happen
only for very small temperature. This slowness most like
also occurs with the real data, and is presumably the ca
for the different scalings ofuFdu @see Sec. IV and Eq.~33!#.

IV. THE C 18H22O2 MOLECULE

In this section the molecule C18H22O2 will be examined,
using some of the techniques introduced earlier. The d
which were supplied by J. D. Korp, have monoclinic stru
ture with P21 /c symmetry;a57.97 Å, b515.29 Å, andc
55.84 Å, with b592.53°. The number ofk points ~or re-
flections! wasM51222. Since the number of formula uni
per cell isZ52, there are a total of 40 atoms per unit ce
although onlyN510 are independent. The hydrogen ato
were ignored, and oxygen atoms were modeled as ca
atoms; a refined calculation could treat them as distinct. W

FIG. 9. ~a! l(T) for N510, M5310; the increase at lowT
marks an increase of the correlation of^uFduuFtu&. ~b! E(s) as
generated by convolution forl51 ~line!, l5p/4 ~dots!, overlaid
with the result from SA wherel was updated~line marked with
1). In all casesN510, M5310.
e

se

a,
-

s
on
h

these data, the structure has been solved by using the
algorithm@1# ~as well as by the direct method@4#!. A picture
of the molecule is given in Fig. 10. Throughout this sectio
a simplification was made by taking the sides to be mutua
perpendicular; the reciprocal lattice vectorskW will thus also
be given by Eq.~4!. The exact calculation only slightly im
proves the results, but can also be done@18#.

The structure factor may be written as

F~kW !5(
j 51

4N

eikW•rW j5(
j 51

N

(
m51

4

eium~ j !, ~21!

where, suppressing thej dependence of theum( j ),

u15kW•rW j ,

u252u1 ,
~22!

u35
1

2
~k21k3!1~2k1 ,k2 ,2k3!•rW j ,

u452u3 .

A little algebra leads to

F~kW !54(
j 51

N

cos~d1k2yj !cos~2d1k1xj1k3zj !, ~23!

whered5p(m21m3). The most important feature of this i
that kW•rW has been split between two cosines. Recall that
the orthorhombic symmetry, for a given selection of tr
positions, each term in the sum forFt(kW ) was independen
not only from all other terms in the sum, but from all oth

FIG. 10. C18H22O2 in a unit cell, viewed along thea axis.
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terms in all the otherFt(kW8). Following the same train o
thought, eachFt(kW ) could be approximated via the usu
CLT, since the mean and variance of each term in Eq.~23! is
finite, and the variance is nonzero.

The situation is different when comparing structure fa
tors with differentk. Here we considerkW5(k1 ,k2 ,k3) and
kW85(k18 ,k2 ,k38) with m21m3 even, so that

F~kW !54(
j 51

N

cos~k2yj !cos~k1xj1k3zj !,

~24!

F~kW8!54(
j 51

N

cos~k2yj !cos~k18xj1k38zj !.

While all the terms within a givenF are independent from
each other, they will be correlated with one other term in
otherF. This is due to the common cos(k2yj) term. The end
result of this like term is that correlations exist betweenEk
with the samek2 and differentk1 , k3 . To complicate mat-
ters, there are also correlations betweenEk when the pair
(k1 ,k3) is the same, andk2 differs. To demonstrate the ex
tent of this effect, when it is ignored andPr(E) is calculated
by convolution as before, one finds at high temperature^E&
'57.9 and^E2&c'2.04. On the other hand, a random sa
pling ~i.e., a SA run at very highT) shows^E&'57.5 and
^E2&c'2.37. Because of this discrepancy, and also beca
our point has already been made regarding the ‘‘phase t
sition,’’ we will not pursue calculatingPr(E) for these data.

The mean and variance found at high temperature will
used to define a Gaussian approximation forPr(E) @as in Eq.
~9!#; the temperature-dependent energy and variance
then be compared to a SA run. There will be 1200 upda
(700 updates for the high temperatures! of the entire unit cell
before loweringT by a factor of 0.9. In this casel is sto-
chastically updated. In Fig. 11~a! is the result for̂ E(T)&; on
the same graph is plotted the Gaussian approximation~using
a measurement of the mean and variance at high temp
ture!. Although the minimum energy reached by the SA
still about 14% of the initial energy, it is still quite a goo
solution~as will be seen in the next section!. The dependence
of the energy on the average error of the solution will
discussed in the next section. Also, the acceptance ratio
function of temperature was very similar to that for the ide
case.

In a manner similar to what was done in Eq.~10!, the
high-temperature limit of the energy can be calculated
recourse to a CLT approximation of the structure facto
Since this is only an average we seek and not a distribut
the correlations between some of theEk are irrelevant here
The only new complication is that averages of powersuFtu
will have two values, depending on which subclass of$k%
they belong to. Denoting

ua~ j !52d1k1xj1k3zj ,
~25!

ub~ j !5d1k2yj ,

the structure factor is now~again suppressing thej depen-
dence!
-

e

-

se
n-

e

ill
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ra-

s a
l

y
.
n,

F~kW !54(
j

cosuacosub . ~26!

The two cases are the following:~1! both ua andubÞ0; ~2!
eitherub or ua50. F(kW) may again be approximated via th
CLT, but its specific form depends on the above cases
case~1! both cosines~or sines! contribute when the mean
and variance of each term are calculated. In case~2! only one
cosine is present, so the variance is larger.@Whenm21m3 is
odd, only case~1! is present.# Thus, according to the casei
51,2, we have

^uFtu&5s iA2N

p
, ~27!

^Ft
2&5s i

2N, ~28!

wheres152 ands252A2. When account is made of thes
two cases and the average energy is calculated via

^E&5
1

M(
$k%

$uFdu222luFdu^uFtu&1l2^uFtu2&% ~29!

FIG. 11. ~a! Plot of ^E(T)& as found by SA~line! with l up-
dating, and that generated from a Gaussian fit~dots!. ~b! Plot of l
versusT, demonstrating the increased correlation between the
and trial atomic positions asT is decreased.
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a value ofE'57.8 is found, which is to be compared to th
already mentioned value of 57.5 found from a random sa
pling measurement~i.e., SA at largeT).

Finally, we point out that it is now possible to calcula
what l should be in the high-temperature limit, whereuFdu
and uFtu are totally uncorrelated. Using Eq.~20!, we would
expect~without scalinguFdu) thatl'0.636. However, when
the real data are used@see Fig. 11~b!#, we find l'0.930,
implying that the scale ofuFdu is about 1.46 times larger tha
of uFtu. Interestingly, at low temperature SA leads tol
'1.20, while Eq.~20! givesl51. As opposed to the ratio o
1.46, these two have a ratio of only 1.20. This serves
support the already clear observation that the true minim
energy has not been reached in the SA run; this may
mately be due to the limited accuracy of the datauFdu.

Accuracy of the solution

The accuracy of the solution just found by SA can
assessed in a manner similar to that in Sec. III E. Howe
because the datauFdu must somehow be taken into accoun
some approximations must be made. In this case, the
will be used to provide the appropriate overall scale of
energy, so that it may be more easily compared to SA ru
For this approximationFd will again be related toFt as in
Eq. ~12!.

Following the presentation of Sec. III E, the positions
the trial atoms will differ from the exact positions by a flu
tuationDrW :
he

a

g

lly
e

n-
de

s
e

e
id

h

-

o
m
ti-

r,
,
ta

e
s.

f

ua→ua1kW•~Dx,0,Dz![ua1w, ~30!

ub→ub1kW•~0,Dy,0![ub1c. ~31!

Using the same distribution as in Eq.~13!, it follows thatw
andc are described by zero-mean normal distributions w
standard deviationsa52psAm1

21m2
2 and b52psum2u,

respectively. As before, because each of the three com
nents of r is uniformly distributed on (0,1), the phase
ua , ub will be uniformly distributed on (0,2p). A simula-
tion that would measureE(s) would thus have to repeatedl
draw two random numbers forua andub , and then two more
for w and c. As it turns out, a simplifying feature arise
because of the identity

^cos~ua1w!cos~ub1c!&w,c

5exp$2~a21b2!/2%cosua cosub . ~32!

This allows us to make the approximation that drawing ra
dom numbers with the same distributions as forw andc may
be replaced by settingc50 in Eq. ~32!, and using for the
distribution of w, Pr(w), a zero-mean normal distributio
with varianceg25a21b2. The combinationa21b2 does
not occur throughout the second moment in Eq.~32!, so this
remains an approximation~although it is numerically accu
rate!. It follows then,
e~g!5K c2F4U(
j 51

N

cosuacosubU24U(
j 51

N

cos~ua1w!cosubUG2L
w

52c2^Ft
2&232c2K U(

j 51

N

cosuacosubUU(
j 51

N

cos~ua1w!cosubU L
w

. ~33!
o

er-
It
to

not
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s
be-
The constantc51.46 is the scaling factor discussed at t
end of the preceding section. It is introduced to scaleuFtu to
the same size asuFdu, so the energy can be compared to th
from SA runs.

Recapitulating,e(g) can now be calculated by drawin
2N random numbers for all of theua andub , with a uniform
distribution on (0,2p), andN more forw with the distribu-
tion Pr(w). Repeating this a number of times eventua
leads to Fig. 12~a!, which is seen to be quite similar in shap
to that obtained for the ideal crystal@in Fig. 8~a!#. In con-
junction with Eq.~18!, the energy as a function of the sta
dard deviation of the positions of the trial atoms can be
rived; the result is shown in Fig. 12~b!. With this graph it is
now possible to assess the errors in position for this data
there exists no competing method. This is significant sinc
tells us that once the energy curve begins to drop@in Fig.
11~a!#, we can be assured that the error in position, on av
age, is already within a few percent of the length of the s
of the crystal. Also, the sharp drop ine(g) acts similarly to
a Heaviside function, and can be used to relate several c
t

-

et;
it

r-
e

ar-

acteristic scales. Denoting the averageukW u by k* , thes that
would correspond to the medianE value would bes*
5g* /k* . ~Thus as morek points are included in$k%, the
smaller s will be when the energy starts to drop, or g
through an apparent phase transition.!

V. CONCLUDING REMARKS

A number of results have been presented for both und
standing the algorithm and providing tools to analyze it.
should be emphasized that very little has hitherto existed
do so; most of the results have been of a formal nature,
lending themselves to immediate applicability~with the ex-
ception of heuristic cooling schedules!.

The apparent ‘‘phase transition’’ that regularly appears
the energy versus temperature graphs is now seen to
consequence of the system falling out of equilibrium, a
getting stuck in a portion of its phase space. It is not a c
sequence of any underlying ‘‘Hamiltonian’’ which exhibit
phase-transition-like behavior. The expected equilibrium
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havior can be calculated beforehand by convolution. If
system did not fall out of equilibrium it would follow this
path. It can also be calculated in an approximate fash
through a generalized central limit theorem.

Finally, the dependence of the energy on the average s
dard deviation~between the trial positions and the corre
solution! has been calculated for two examples. This p
vides the user with the valuable information of how close
trial positions are to the real atomic positions.
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APPENDIX A

The problem is to find the distribution ofkW•rW when it is

used in the functioneikW•rW, wherekW52p(m1 ,m2 ,m3), each

FIG. 12. ~a! e(g) for C18H22O2 . ~b! E(s) for C18H22O2 .
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m is an integer, andrW5(x1 ,x2 ,x3), where eachx is
uniformly distributed on (0,1). First, it is obvious that
f is a 2p-periodic function, then f (2pm1x11•••)5
f (2px11•••). Thus, settingyi52pxi , the problem now is
to determine ify11y21y3 is uniformly distributed when
used inf . We shall calculate the distribution of this sum, b
convoluting them two at a time~i.e., firsth5y11y2).

Starting from

Pr~h!5E
0

2p

dy1E
0

2p

dy2 d„h2~y11y2!…Pr~y1!Pr~y2!

~A1!

it is straightforward to show that

2pPr~h!5hu~h!u~2p2h!1~4p2h!u~4p2h!

3u~h22p!. ~A2!

Sinceh will be used in a 2p-periodic function, the part on
(2p,4p) may be folded over onto (0,2p). So when used in
this context,Pr(h)5(2p)21. What has been shown is tha
when used in a 2p-periodic function, the distribution of two
variables uniformly distributed on (0,2p) ~i.e., y11y2) pro-
duces another variable uniformly distributed on 2p ~i.e., h).
This leaves us the task yet of finding the distribution ofh
1y3 . However, this is the same problem as withy11y2 ,
and we conclude that the distribution ofy11y21y3 ~or
k•r ) may be taken as uniformly distributed on (0,2p) when
used in a 2p-periodic function.

APPENDIX B

In this section a generalization of the usual CLT@20# is
discussed, as it requires special conditions for it to hold. I
of use when the terms in the sum~that is being approxi-
mated! do not all have the same probability distribution,
with the the sum ofEk @see Eq.~2!#.

Let X1 , X2 , . . . be independent variables satisfying

EXj50, var~Xj !5s j
2 , EuXj

3u,` ~B1!

FIG. 13. Plot of lnR(n) versus lnn from Eq. ~B2!, for the ideal
crystal withM5310 andN510.
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~whereE denotes expectation value! and such that

R~n![
1

s~n!3 (
j 51

n

EuXj
3u→0 as n→`, ~B2!

where

s~n!25varS (
1

n

Xj D 5(
1

n

s j
2 . ~B3!

Then
G

ta

d

s

d
n

tt

c

rn
,

1

s~n!(1

n

Xj→N~0,1!, ~B4!

whereN(0,1) is a normal distribution with zero mean an
unit variance.

In Fig. 13, lnR(n) is plotted versus lnn for the case of the
ideal crystal withN510, M5310, andn51, . . . ,M ; n la-
bels thek vectors. This establishes thatR(n) vanishes asn
→`, and thus that this CLT may be used to approximate
sum of theEk .
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